Skip to main content
Loading...

Celik Ozdes, Deniz Eroglu

The European Physical Journal Special Topics - Published on 2022

Irregularly sampled time series analysis is a common problem in various disciplines. Since conventional methods are not directly applicable to irregularly sampled time series, a common interpolation approach is used; however, this causes data distortion and consequently biases further analyses. We propose a method that yields a regularly sampled time series spectrum of costs with minimum information loss. Each time series in this spectrum is a stationary series and acts as a difference filter. The transformation costs approach derives the differences between consecutive and arbitrarily sized segments. After obtaining regular sampling, recurrence plot analysis is performed to distinguish regime transitions. 

Leave a Comment